Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Molecules ; 27(19)2022 Sep 23.
Article in English | MEDLINE | ID: covidwho-2066272

ABSTRACT

Streptococcus pneumoniae (S. pneumoniae), as a Gram-positive bacterium, can cause severe bacterial pneumonia, and result in high morbidity and mortality in infected people. Meanwhile, isolated drug-resistant S. pneumoniae is growing, which raises concerns about strategies for combatting S. pneumoniae infection. To disturb S. pneumoniae pathogenicity and its drug-resistance, developing novel anti-infective strategies or compounds is urgent. In this study, the anti-infective effect of shionone was explored. A minimum inhibitory concentration (MIC) assay and growth curve determination were performed to evaluate the effect of the tetracyclic triterpenoid compound shionone against S. pneumoniae. Hemolysis tests, western blotting, oligomerization inhibition assays, and molecular docking were carried out to explore the anti-infective mechanism of shionone. Moreover, the protective effect of shionone was also confirmed in a mousepneumonia model. The results showed that the excellent hemolytic inhibitory activity of shionone was observed at less than 8 µg/mL. Meanwhile, shionone could disturb the oligomerization of pneumolysin (PLY) but did not interfere with PLY expression at less than 4 µg/mL. Molecular docking suggested that shionone targeted the ASP-59, ILE-60, THR-57, PHE-344, and ASN-346 amino acid sites to reduce S. pneumoniae pathogenicity. Furthermore, shionone alleviated lung histopathologic injury and decreased lung bacterial colonization in vivo. The above results showed that shionone could bind to the PLY active pocket under the concentrations of 8 µg/mL and neutralize PLY hemolysis activity to reduce S. pneumoniae pathogenicity in vitro and in vivo.


Subject(s)
Acute Lung Injury , Triterpenes , Amino Acids/pharmacology , Bacterial Proteins/metabolism , Hemolysis , Humans , Molecular Docking Simulation , Streptococcus pneumoniae , Streptolysins/metabolism , Streptolysins/pharmacology , Triterpenes/pharmacology
2.
Chirality ; 34(1): 86-103, 2022 01.
Article in English | MEDLINE | ID: covidwho-1490729

ABSTRACT

Amino acids (AAs) play an important role in the modern health industry as key synthetic precursors for pharmaceuticals, biomaterials, biosensors, and drug delivery systems. Currently, over 30% of small-molecule drugs contain residues of tailor-made AAs or derived from them amino-alcohols and di-amines. In this review article, we profile 12 AA-derived new pharmaceuticals approved by the FDA in 2020. These newly introduced drugs include Tazverik (epithelioid sarcoma), Gemtesa (overactive bladder), Zeposia (multiple sclerosis), Byfavo (induction and maintenance of procedural sedation), Cu 64 dotatate, and Gallium 68 PSMA-11 (both PET imaging), Rimegepant (acute migraine), Zepzelca (lung cancer), Remdesivir (COVID-19), Amisulpride (nausea and vomiting), Setmelanotide (obesity), and Lonafarnib (progeria syndrome). For each compound, we describe the spectrum of biological activity, medicinal chemistry discovery, and synthetic preparation.


Subject(s)
Amino Acids/pharmacology , Drug Approval , Pharmaceutical Preparations/chemistry , Amino Acids/chemistry , Molecular Structure , United States , United States Food and Drug Administration
3.
Bioorg Med Chem Lett ; 47: 128202, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1272320

ABSTRACT

Cathepsin C plays a key role in the activation of several degradative enzymes linked to tissue destruction in chronic inflammatory and autoimmune diseases. Therefore, Cathepsin C inhibitors could potentially be effective therapeutics for the treatment of diseases such as chronic obstructive pulmonary disease (COPD) or acute respiratory distress syndrome (ARDS). In our efforts towards the development of a novel series of Cathepsin C inhibitors, we started working around AZD5248 (1), an α-amino acid based scaffold having potential liability of aortic binding. A novel series of amidoacetonitrile based Cathepsin C inhibitors were developed by the application of a conformational restriction strategy on 1. In particular, this work led to the development of a potent and selective Cathepsin C inhibitor 3p, free of aortic binding liability.


Subject(s)
Aorta/metabolism , COVID-19 Drug Treatment , Cathepsin C/antagonists & inhibitors , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/pharmacology , Respiratory Distress Syndrome/drug therapy , Acetonitriles/chemistry , Acetonitriles/pharmacology , Amino Acids/chemistry , Amino Acids/pharmacology , Biphenyl Compounds/pharmacology , COVID-19/complications , Humans , Models, Molecular , Molecular Structure , Respiratory Distress Syndrome/etiology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL